Pengaruh Fraksi Volume Terhadap Sifat Mekanis Komposit Forged Fiberglass Metode Compression Mould

Main Article Content

Muhammad Fakhruddin Imam Mashudi Mochamad Muzaki Hilmi Iman Firmansyah Bayu Pranoto Hangga Wicaksono

Abstract

Fiber-reinforced composites can be classified into two parts, namely short fiber composites and long fiber composites. Long fibers are stronger than short fibers. Long fiber (continuous fiber) is more efficient in laying than short fiber but short fiber is easier to lay than long fiber. Fiber length affects the processability of the fiber composite. Judging from the theory, long fibers can continue the load and stress from the stress point to the other fiber. In this study, the volume of chopped glass fiber composite with random matrix direction was varied with respect to polyester resin. Making forged fiberglass composites with the press mold method to minimize the occurrence of air bubbles during the composite molding process. Testing the mechanical properties of the forged fiberglass composite using the three-point bending and tensile testing methods. The expected result is the variation of the volume fraction of random chopped glass fiber to polyester resin. The TKT to be achieved from this research is TKT level 3, which is an analytical study that supports the prediction of the performance of the effect of the volume fraction between glass fiber and resin on the mechanical properties of the tensile and bending strength of forged glass fiber composites

Downloads

Download data is not yet available.

Article Details

How to Cite
Fakhruddin, M., Mashudi, I., Muzaki, M., Firmansyah, H., Pranoto, B., & Wicaksono, H. (2022). Pengaruh Fraksi Volume Terhadap Sifat Mekanis Komposit Forged Fiberglass Metode Compression Mould. Jurnal Energi Dan Teknologi Manufaktur (JETM), 5(02), 35-40. https://doi.org/https://doi.org/10.33795/jetm.v5i02.134
Section
Articles

References

[1] M. Chandrasekar, M. R. Ishak, M. Jawaid, Z. Leman, and S. M. Sapuan, “An experimental review on the mechanical properties and hygrothermal behaviour of fibre metal laminates,” J. Reinf. Plast. Compos., vol. 36, no. 1, pp. 72–82, 2017, doi: 10.1177/0731684416668260.
[2] N. K. Romli et al., “The behavior of Aluminium Carbon/Epoxy fibre metal laminate under quasi-static loading,” IOP Conf. Ser. Mater. Sci. Eng., vol. 257, no. 1, 2017, doi: 10.1088/1757-899X/257/1/012046.
[3] R. Kulkarni, A. Mache, and A. Salve, “A Review : Fiber Metal Laminates ( FML ’ s ) - Manufacturing , Test methods and Numerical modeling,” Int. J. Eng. Technol. Sci., vol. 6, no. 1, pp. 71–84, 2016.
[4] X. P. Zhang, T. H. Yang, J. Q. Liu, X. F. Luo, and J. T. Wang, “Mechanical properties of an Al/Mg/Al trilaminated composite fabricated by hot rolling,” J. Mater. Sci., vol. 45, no. 13, pp. 3457–3464, 2010, doi: 10.1007/s10853-010-4373-z.
[5] D. G. do. Santos, R. J. C. Carbas, E. A. S. Marques, and L. F. M. da Silva, “Reinforcement of CFRP joints with fibre metal laminates and additional adhesive layers,” Compos. Part B Eng., vol. 165, no. November 2018, pp. 386–396, 2019, doi: 10.1016/j.compositesb.2019.01.096.
[6] M. Fakhruddin, M. Maskuri, E. Faizal, B. Pranoto, H. Wicaksono, and H. I. Firmansyah, “Pengaruh Perlakuan Permukaan Pengikatan Terhadap Sifat Mekanik Komposit Serat Kaca Dengan Laminasi Almunium,” J. Energi dan Teknol. Manufaktur, vol. 4, no. 02, pp. 27–32, 2021, doi: 10.33795/jetm.v4i02.79.
[7] H. I. Firmansyah, A. Purnowidodo, S. A. Setyabudi, T. Mesin, and U. Brawijaya, “Pengaruh Mechanical Bonding Pada Aluminium Dengan Serat,” vol. 9, no. 2, pp. 127–134, 2018.
[8] Hariharan E and Santhanakrishnan R, “Experimental Analysis of Fiber Metal Laminate With Aluminium Alloy for Aircraft Structures,” © Int. J. Eng. Sci. Res. Technol., no. 5, 2016, doi: 10.5281/zenodo.50999.